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1. Integrated modelling of toroidal plasmas 

2. Data exchange in integrated simulation 

3. Integrated tokamak modelling code TASK 

4. Various level of transport modelling  

5. Full wave analysis in toroidal plasmas 

6. Summary



Integrated Simulation of Toroidal Plasmas
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In order to 
! predict the performance of future fusion devices 
! optimize their operation scenario  
! contribute to acceptable design of DEMO reactor

We need a reliable tool to describe 
Whole plasma 
! core, edge, scrape-off layer, divertor 

plasmas, and plasma-wall 
interactions  

Whole discharge period  
! startup, sustainment, probabilistic 

incidents, and shut down



Use Case of Integrated Modelling
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Device design phase Prediction of performance	

Specification of components

Before experiment Prediction of time evolution	

Optimization of operation scenario

During experiment Real time analysis	

Between shot analysis

After experiment Systematic analysis of experimental data	

Validation of physics models

Next device Conceptual design	

Development of control system



Modelling of Toroidal Plasmas
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Broad range of time scale 
100 GHz ～ 1000 s 

Broad range of spatial scale: 
10 "m ～ 10 m 

Various phenomena  
in toroidal plasmas

One simulation code cannot 
cover all range.

Wide range of time scale, spatial scale, and understanding 
! Integrated simulation combining modelling codes 
! Various levels of physics model



Structure of Integrated Modelling
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Structure of Toroidal Plasma Simulation
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Desired features of Integrated Code
Modular structure 
‣ Easier maintenance of components 

•Addition of new models, update of old models 
‣ Various levels of analyses: 

•Quick, Standard, Precise, Rigorous 

Unified interface 
‣ Data set for information exchange 
‣ Program interface for data exchange 
‣ File interface for data storage 
‣ User interface for easier learning 

High usability 
‣ Portability: Various computational environment 
‣ Source accessibility: More user, easier maintenance 
‣ Visualization: Understanding of phenomena 

High performance 
‣ Parallel processing for large-scale and fast computation 8



Integrated Modelling Activities

JA: BPSI 
‣ Burning Plasma Simulation Initiative 
‣ Data structure and data interface: BPSD 
‣ Execution control interface: BPSX 

EU: ITM TF 
‣ Integrated Tokamak Modelling - Task Force 
‣ Data model: CPO (Consistent Physical Objects) 
‣ Code interface: UAL (Universal Access Layer) 

ITER: IM Programme 
‣ IMAS: Integrated Modelling Analysis Suits 
‣ IM standards and guideline 
‣ ITER Data model 

•Data exchange between modules 

•Description of device (coils, actuators, diagnostics) 

•Experimental and simulation data storage
9



Data exchange between components: BPSD

Purpose 
‣ Standard dataset: Specify set of data 
‣ Specification of data exchange interface: initialize, set, get 
‣ Specification of file i/o interface: save, load 

Policy of BPSD 
‣ Minimum and Sufficient Dataset 
•To minimize the data to be exchanged 
•Mainly profile data 
•Routines to calculate global quantities 
‣ Minimum Arguments in Interfaces 
•To maximize flexibility 
•Use structured data 
•Only one dataset in the arguments of an interface 
‣ Minimum Kinds of Interfaces 
•To make modular programming easier 
•Use function overloading

10



BPSD Data Exchange Interface
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BPSD Standard Dataset
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BPSD Code Interface

bpsd_set_data(data,ierr): 
‣ Copy data into internal dataset 

bpsd_get_data(data,ierr): 
‣ Copy of interpolate data fram internal dataset 

•If nrmax=0, copy data;  

•otherwise interpolate for given mesh. 

bpsd_save(ierr): 
‣ Save all BPSD data into a file 
‣ Name of the file is optional. 

bpsd_load(ierr): 
‣ Load all BPSD data from a file 
‣ Name of the file is optional. 

Interface for history archiving is under consideration.
13



Several Approaches on Workflow

Monolithic code approach: original approach 
‣ Memory-based data exchange 
•Template:  call bpsd_get_data 
•     calculation 
•     call bpsd_set_data 

Command approach: for script and workflow tool 
‣ File-based data exchange 
•Template:  call bpsd_load ← bpsddata 
•     call bpsd_get_data 
•     calculation 
•     call bpsd_set_data 
•     call bpsd_save → bpsddata 

Pre- and post- process approach: no modification of the code 
‣ Data conversion  
•Template  pre-process: bpsddata → input file 
•     run code 
•     post-process: output file → bpsddata 14



Integrated Modelling Code: TASK

Core of Integrated Modelling Code in BPSI 
‣ Modular structure for easier maintenance 
‣ Reference implementation of BPSD and BPSX 

Various Heating and Current Drive Scheme 
‣ EC, LH, IC, AW, NB 

High Portability 
‣ Most of library routines included 
‣ Original graphic libraries (X11, Postscript, OpenGL, SVG) 

Development using CVS (Version control for collaboration) 

Open Source: http://bpsi.nucleng.kyoto-u.ac.jp/task/ 

Parallel Processing using MPI and PETSc

15

Transport Analyzing System for tokamaK



Present Structure of the TASK code and related codes

Developed since 1992, now at Kyoto University
16



Present Structure of TASK3D for Helical Plasmas
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Various Levels of Transport Modelling
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Transport Modelling in the TASK code

Diffusive transport equation: TASK/TR 
‣ Diffusion equation for plasma density 
‣ Flux-Gradient relation 
‣ Conventional transport analysis 

 Dynamical transport equation: TASK/TX: 
‣ Two-fluid equation and Maxwell’s equation 
‣ Flux-averaged fluid equation 
‣ Plasma rotation and transient phenomena 

 Kinetic transport equation: TASK/FP: 
‣ Drift-kinetic equation for momentum distribution function 
‣ Bounce-averaged Fokker-Plank equation 
‣ Time evolution of momentum distribution
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Diffusive Transport Equation: TASK/TR
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Transport processes

Neoclassical transport 
‣ Collisional transport in a nonuniform magnetic field 
‣ Radial diffusion, enhanced resistivity, bootstrap current, 

Ware pinch 

Turbulent transport 
‣ Various transport models 
‣ GLF23, CDBM, Bohm/gyro Bohm, TGLF, ··· 
Atomic transport 
‣ charge exchange, ionization, recombination 

Radiation transport 
‣ Line radiation, Bremsstrahlung, Synchrotron radiation 

Parallel transport 
‣ along open magnetic field lines in SOL plasmas 

Sources 
‣ Particle: gas puff, NBI, pellet 
‣ Momentum: NBI, waves 
‣ Heat: NBI, waves, fusion reaction
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Heat Transport Simulation of ITER Scenarios
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1D Dynamical Transport Code: TASK/TX

Dynamical Transport Equations (TASK/TX) 
‣ M. Honda and A. Fukuyama, JCP 227 (2008) 2808 
‣ A set of flux-surface averaged equations 
‣ Two fluid equations for electrons and ions 

•Continuity equations 

•Equations of motion (radial, poloidal and toroidal) 

•Heat transport equations 
‣ Maxwell’s equations 
‣ Slowing-down equations for beam ion component 
‣ Diffusion equations for three-group neutrals 

Self-consistent description of plasma rotation and 
electric field 
‣ Equation of motion rather than transport matrix 

 Quasi-neutrality is not assumed.
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Dynamical Transport Equation in TASK/TX (1)
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Dynamical Transport Equation in TASK/TX (2)
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Typical Ohmic Plasma Profiles at t = 50 ms
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Density Profile Modification Due to NBI Injection
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Toroidal Rotation Due to Ion Orbit Loss
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Kinetic Integrated Modelling: Motivation
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Better understanding of burning plasmas 

‣ Behavior of energetic particles 

•generation, transport excitation 

Analysis of momentum distribution function 

‣ Consistent analysis of heating and current drive 

•both bulk and energetic components 

•all heating schemes 

‣ Influence of energetic particles on heating processes 

•propagation and absorption of waves 

•fusion reaction rate 

‣ Modification of momentum distribution due to radial transport 

Modelling based on momentum distribution function is required.



Fokker-Planck Analysis in TASK/FP
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Kinetic Transport Modelling: TASK/FP

Multi species conservation between species

Three dimensional 2D in momentum, 1D in radial

Bounce averaged trapped particle effect

Nonlinear collision momentum and energy conservation

Relativistic weakly relativistic collision term

Fusion reaction velocity integral

Parallel processing using parallel matrix solver PETSc library

Finite orbit size under development

Induced EM fields under development

Fokker-Planck analysis of distribution function
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Multi-Species Fokker-Planck Analysis
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Analysis of Multi-Scheme Heating in ITER Plasma
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Momentum Distribution Functions (t = 1 s)
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Power Transfer between Species
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Simulation with Radial Transport
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Dependence on Radial Diffusion model
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Full Wave Analysis
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Full wave analysis: TASK/WM
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ICRF Waves in a Helical Plasma
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TAE Analysis with TASK/WM
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RSAE Excitation by Energetic Particles
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Progress in Full Wave Analysis
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Full wave analysis by FEM: TASK/WF3D/WF2D
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EC waves in a small-size ST

‣ R=0.22 m, a=0.16 m, B0=0.072 T 
‣ f=5 GHz, nφ=8, ν/ω=0.001     O - X - UHR
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Integral Formulation of Wave-Particle Interaction
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Variable Transformation
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Kernel Functions
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One-Dimensional Analysis
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Issues in Kinetic Integrated Modeling

Modeling of transport process 
‣ Turbulent transport coefficients with velocity 

dependence 
‣ Finite orbit size effects (Neoclassical transport) 
‣ Coupling with toroidal electric field (Faraday’s law) 
‣ Keeping charge neutrality (Gauss’s Law) 

Kinetic full wave analysis 
‣ Integral form of dielectric tensor including finite gyro 

radius effects 
‣ Gyro kinetic dielectric tensor for coupling with drift 

waves 

 Coupling with other components 
‣ Equilibrium including kinetic effects 
•Anisotropic pressure, and flow 
‣ Modeling of diagnostics 
•Validation by direct comparison
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Summary

Integrated modelling of toroidal plasmas is required 
for understanding the physics of  experimental 
observations and predicting the performance of 
future devices.  

For large scale integrated simulation, development 
and spread of a standard data model is essential.  
Several efforts to develop infrastructures for 
integrated modelling are under way. 

We have been developing the integrated modelling 
suites TASK which includes several levels of transport 
modelling and full wave analysis of toroidal plasmas. 
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